外观模式(Facade Pattern)
目录
1. 介绍
1.1 定义
定义了一个高层、统一的接口,外部与通过这个统一的接口对子系统中的一群接口进行访问。
通过创建一个统一的外观类,用来包装子系统中一个 / 多个复杂的类,客户端可通过调用外观类的方法来调用内部子系统中所有方法
如下图:
给个网站的导航例子你就懂了:以前我需要在搜索栏逐个搜索网站地址;有了网站导航(用了外观模式)后,就方便很多了
1.2 主要作用
- 实现客户类与子系统类的松耦合
- 降低原有系统的复杂度
- 提高了客户端使用的便捷性,使得客户端无须关心子系统的工作细节,通过外观角色即可调用相关功能。
- 引入外观角色之后,用户只需要与外观角色交互;
- 用户与子系统之间的复杂逻辑关系由外观角色来实现
1.3 解决的问题
- 避免了系统与系统之间的高耦合度
- 使得复杂的子系统用法变得简单
2. 模式原理
2.1 UML类图 & 组成
2.2 实例讲解
接下来我用一个实例来对建造者模式进行更深一步的介绍。
a. 实例概况
- 背景:小成的爷爷已经80岁了,一个人在家生活:每次都需要打开灯、打开电视、打开空调;睡觉时关闭灯、关闭电视、关闭空调;
- 冲突:行动不方便,走过去关闭那么多电器很麻烦,代码如下:
1.电器类:
// 灯类
public class SubSystemA_Light {
public void on(){
System.out.println("打开了灯....");
}
public void off(){
System.out.println("关闭了灯....");
}
}
// 电视类
public class SubSystemB_Television {
public void on(){
System.out.println("打开了电视....");
}
public void off(){
System.out.println("关闭了电视....");
}
}
// 空调类
public class SubSystemC_Aircondition {
public void on(){
System.out.println("打开了电视....");
}
public void off(){
System.out.println("关闭了电视....");
}
}
- 客户端调用:小成爷爷使用电器情况
public class Facade_Pattern{
public static void main(String[] args){
{
SubSystemA_Light light = new SubSystemA_Light();
SubSystemB_Television television = new SubSystemB_Television();
SubSystemC_Aircondition aircondition = new SubSystemC_Aircondition();
// 起床后开电器
System.out.prinln("起床了");
light.on();
television.on();
aircondition.on();
System.out.prinln("可以看电视了");
// 睡觉时关电器
System.out.prinln("睡觉了");
light.off();
television.off();
aircondition.off();
System.out.prinln("可以睡觉了");
}
}
结果
起床了
打开了灯
打开了电视
打开了空调
可以看电视了
睡觉了
关闭了灯
关闭了电视
关闭了空调
可以睡觉了
从上面可以看出,在不使用外观模式的情况下,小成爷爷需要对每个电器都进行操作,非常不方便
客户端与三个子系统都发生了耦合,使得客户端程序依赖于子系统
解决方案
小成买了一个智能家具控制器(外观对象/统一接口)给他爷爷,他爷爷只需要一键就能打开/关闭 灯、电视机、空调
- 即用外观模式来为所有子系统设计一个统一的接口
- 客户端只需要调用外观类中的方法就可以了,简化了客户端的操作
- 电器类同上
- 外观类:智能遥控器
public class Facade{
SubSystemA_Light light;
SubSystemB_Television television ;
SubSystemC_Aircondition aircondition;
// 传参
public Facade(SubSystemA_Light light,SubSystemB_Television television,SubSystemC_Aircondition aircondition){
this.light = light;
this.television = television ;
this.aircondition =aircondition;
}
// 起床后一键开电器
public void on{
System.out.prinln("起床了");
light.on();
television.on();
aircondition.on();
}
public void off{
// 睡觉时一键关电器
System.out.prinln("睡觉了");
light.off();
television.off();
aircondition.off();
}
}
- 客户端调用:爷爷使用智能遥控器的时候
public class Facade_Pattern{
public static void main(String[] args){
{
//实例化电器类
SubSystemA_Light light = new SubSystemA_Light();
SubSystemB_Television television = new SubSystemB_Television();
SubSystemC_Aircondition aircondition = new SubSystemC_Aircondition();
//传参
Facade facade = new Facade(light,television,aircondition);
//客户端直接与外观对象进行交互
facade.on;
System.out.prinln("可以看电视了");
facade.off;
System.out.prinln("可以睡觉了");
结果
起床了
打开了灯
打开了电视
打开了空调
可以看电视了
睡觉了
关闭了灯
关闭了电视
关闭了空调
可以睡觉了
3. 优缺点
在全面解析完后,我来分析下其优缺点:
3.1 优点
- 降低了客户类与子系统类的耦合度,实现了子系统与客户之间的松耦合关系
- 只是提供了一个访问子系统的统一入口,并不影响用户直接使用子系统类
- 减少了与子系统的关联对象,实现了子系统与客户之间 的松耦合关系,松耦合使得子系统的组件变化不会影响到它的客户。
- 外观模式对客户屏蔽了子系统组件,从而简化了接口,减少了客户处理的对象数目并使子系统的使用更加简单。
- 引入外观角色之后,用户只需要与外观角色交互;
- 用户与子系统之间的复杂逻辑关系由外观角色来实现
- 降低原有系统的复杂度和系统中的编译依赖性,并简化了系统在不同平台之间的移植过程
因为编译一个子系统一般不需要编译所有其他的子系统。一个子系统的修改对其他子系统没有任何影响,而且子系统内部变化也不会影响到外观对象。
3.2 缺点
-
在不引入抽象外观类的情况下,增加新的子系统可能需要修改外观类或客户端的源代码,违背了“开闭原则”
-
不能很好地限制客户使用子系统类,如果对客户访问子系统类做太多的限制则减少了可变性和灵活性。
4. 应用场景
- 要为一个复杂的子系统对外提供一个简单的接口
- 提供子系统的独立性
- 客户程序与多个子系统之间存在很大的依赖性
引入外观类将子系统与客户以及其他子系统解耦,可以提高子系统的独立性和可移植性。
- 在层次化结构中,可以使用外观模式定义系统中每一层的入口
层与层之间不直接产生联系,而通过外观类建立联系,降低层之间的耦合度。
5. 与适配器模式的区别
-
外观模式的实现核心主要是——由外观类去保存各个子系统的引用,实现由一个统一的外观类去包装多个子系统类,然而客户端只需要引用这个外观类,然后由外观类来调用各个子系统中的方法。
-
这样的实现方式非常类似适配器模式,然而外观模式与适配器模式不同的是: 适配器模式是将一个对象包装起来以改变其接口,而外观是将一群对象 ”包装“起来以简化其接口。它们的意图是不一样的,适配器是将接口转换为不同接口,而外观模式是提供一个统一的接口来简化接口 。
6. 总结
- 本文主要对 外观模式 进行了全面介绍
7.外观模式golang
实现
API 为facade 模块的外观接口,大部分代码使用此接口简化对facade类的访问。
facade模块同时暴露了a和b 两个Module 的NewXXX和interface,其它代码如果需要使用细节功能时可以直接调用。
facade.go
package facade
import "fmt"
func NewAPI() API {
return &apiImpl{
a: NewAModuleAPI(),
b: NewBModuleAPI(),
}
}
//API is facade interface of facade package
type API interface {
Test() string
}
//facade implement
type apiImpl struct {
a AModuleAPI
b BModuleAPI
}
func (a *apiImpl) Test() string {
aRet := a.a.TestA()
bRet := a.b.TestB()
return fmt.Sprintf("%s\n%s", aRet, bRet)
}
//NewAModuleAPI return new AModuleAPI
func NewAModuleAPI() AModuleAPI {
return &aModuleImpl{}
}
//AModuleAPI ...
type AModuleAPI interface {
TestA() string
}
type aModuleImpl struct{}
func (*aModuleImpl) TestA() string {
return "A module running"
}
//NewBModuleAPI return new BModuleAPI
func NewBModuleAPI() BModuleAPI {
return &bModuleImpl{}
}
//BModuleAPI ...
type BModuleAPI interface {
TestB() string
}
type bModuleImpl struct{}
func (*bModuleImpl) TestB() string {
return "B module running"
}
facade_test.go
package facade
import "testing"
var expect = "A module running\nB module running"
// TestFacadeAPI ...
func TestFacadeAPI(t *testing.T) {
api := NewAPI()
ret := api.Test()
if ret != expect {
t.Fatalf("expect %s, return %s", expect, ret)
}
}